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SU(3) in an O(3) basis I. Properties of shift operators 

J W B Hughes 
Department of Applied Mathematics, Queen Mary College, Mile End Road, London 
E l  4NS, UK 

MS received 2 February 1972. in revised form 27 July 1972 

Abstract. With a view to obtaining an orthogonal solution to the state labelling problem of 
SU(3) in an O(3) basis. four independent operators which shift the eigenvalues of the O(3) 
Casimir operator L2 are constructed. The hermiticity properties of these operators, and of 
certain of their products which commute with L2, are discussed. 

1. Introduction 

The group SU(3) contains two distinct types of SU(2) subgroups. an  example of the 
more familiar type being the isotopic spin subgroup of the SU(3) group of hadron 
physics. In this case the additional SU(3) generators transform under commutation 
with the SU(2) generators as two doublets and a scalar tensor representation of SU(2). 
For  the other type of SU(2) subgroup. the additional generators transform like a single 
five-dimensional tensor representation. Examples of this type are the subgroup of the 
group of unimodular unitary (3 x 3) matrices consisting of the orthogonal matrices, and 
the subgroup of the SU(3) symmetry group of the three-dimensional harmonic oscillator 
generated by the angular momentum operators (Allen Baker J r  1956, Lipkin 1965). A 
marked difference also arises in the decomposition of irreducible representations of 
SU(3) upon restriction to  the two types of subgroups : in the former case representations 
specified by half integral 1 values occur (where I ( ! +  1) is the eigenvalue of the SU(2) 
Casimir L2) ,  whereas in the latter case only representations corresponding to integral 
1 values arise (Elliot 1958a, b. Bargmann and Moshinsky 1960. 1961 and De  Baenst-van 
den Broucke et a1 1970). For  this reason the two groups may be distinguished by the 
titles SU(2) and  O(3): respectively. 

The analysis of representations of SU(3) into irreducibles of its O(3) subgroup is 
considerably harder than for its SU(2) subgroup, due to the difficulty in distinguishing 
between different states corresponding to  the same degenerate I value. Whereas the 
degeneracy of any 1 value appearing in a given SU(3) representation is already well 
known (Elliot 1958a, b. Bargmann and Moshinsky 1960, 1961 and De  Baenst-van den 
Broucke et a1 1970), so far attempts a t  obtaining an  orthogonal specification of the 
corresponding states have had only limited success. 

There exist two hermitian O(3) scalar operators, 0; and Qp of, respectively. third 
and fourth orders in the group generators, and either of these, together with L 2  and the 
O(3) generator I , ,  form a complete set of commuting hermitian operators for the 
irreducible SU(3) representation spaces. Mutually orthogonal states corresponding to  
degenerate I values can in principle therefore be obtained by choosing them to  be 
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eigenvectors of 0: or  Qp. However. Racah (1962) reported that he and collaborators 
were unable to  find a method of calculating the eigenvalues of any hermitian combination 
of these operators. He showed in particular that n o  such combination could have 
rational eigenvalues: a fact borne out in the following paper. Elliot (1958a. b) and 
Bargmann and  Moshinsky (1960, 1961) meanwhile derived methods of distinguishing 
degenerate I states by means of parameters which did take on rational values, but the 
states they obtained were not orthogonal. 

In this and the following paper we shall show that a conceptually simple and system- 
atic: if algebraically somewhat involved. method does in fact exist for calculating the 
eigenvalues of 0: and Qp, thus in principle solving the problem of obtaining an  ortho- 
gonal specification of the degenerate I states. The solution rests upon the existence of 
some previously unknown shift operators. 0: and O:,: which change the I values of 
states upon which they act by. respectively, & 1 and f 2  without altering the I ,  value. 
and  in this paper we concern ourselves with the derivation and properties of these 
operators. They are analogous to operators derived by Stone (1956) for the O(3) sub- 
group of0(4) ,  although for that group only operators of the  type 0: ' exist. It is precisely 
because of the existence for SU(3) of two pairs of such operators, which give alternative 
ways of connecting states of different 1 values. that I degeneracy occurs. Starting from 
the maximum I state, which is annihilated by 0: and O:,. states of successively lower 
1 values may be defined by the repeated action of 0; ' and 0; '. Because various products 
of these operators. such as O;+',O: which commute with L 2 .  are expressible in terms 
of Op and Qp. the matrix elements of the latter operators can readily be obtained: it is 
then a straightforward matter t o  calculate their eigenvalues. 

In S; 2 we shall summarize the forms of the generators to be employed in this paper 
and  relate them to  the more familiar generators used when discussing the SU(2) subgroup 
of SU(3). Expressions for Op and Qp and the SU(3) invariants I ,  and I, will also be given. 
The remainder of the section is concerned with the calculation of the shift operators. 

Section 3 deals with the hermiticity properties of these operators, which are some- 
what complicated by the fact that 0: ' and 0: , are 'one-sided' operators, that is; they 
act as shift operators only upon states t o  the right and not upon states to the left. In S; 4 
we give expressions in terms of Op, Qp and  the SU(3) invariants for those products of 
the shift operators which commute with L 2 .  The application of these operators t o  the 
solution of the state labelling problem will be treated in the following paper?. 

2. Construction of the shift operators 

The most commonly used choice for the generators of the group SU(3) is the one con- 
sisting of the Cartan subalgebra H I ,  H ,  and its root vectors E+,, E * ,  and Eia. These 
are the generators used, for instance, by Baird and  Biedenharn (1963) who summarize 
their commutation relations. H ,  and  E,, together generate an  SU(2) subgroup: the 
pairs of generators E,, and E ,  ij both form two-dimensional tensor representations of 
this subgroup, and  H ,  a one-dimensional representation. 

SU(3) possesses two invariants I ,  and I ,  of, respectively, second and third order, 
whose eigenvalues serve to  specify uniquely its irreducible representations. Baird and  
Biedenharn (1963) show that every unitary irreducible representation may be labelled 
by the pair of integers ( p ,  q )  satisfying p 3 q 3 0 and related to  I ,  and I, by the formulae 

I ,  = $ ( p ,  + 4 2  - p q  + 3 p )  
t This paper will appear in a following issue of the journal 
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and 

(2) 

In this paper we shall be concerned with a different form for the generators, defined 

1 - 1  
3 - 1 6 h  - 24)(2P + 3 - 4 ) ( P  + 4 + 3 )  

( p .  q )  and ( p ,  p -  q )  are contragredient representations. 

in terms of the above generators by 

I ,  = 2J3H1, I ,  = 2 J 3 ( E , r E , p )  

40 = -6H2, 4 i l  - - -3J2(E,p+E,/j). 4 + 2  = -6E,.. 
( 3 )  

These satisfy the commutation relations 

qo is hermitian. whereas q k  and  qi2 are pairs of hermitian conjugate operators. I, and 
I, together generate an O(3) subgroup of SU(3). with respect to which the 4’ form a 
five-dimensional irreducible tensor representation. 

I, and I, are given in terms of these generators by the formulae: 

1 2  = &3L2 + 4;  +4+ 14- 1 + 4-  14+ 1 + 4 +  24-2 +4-24+ 2) (6) 
1 

2 x (36)2 I, = ~ [ 240 {24 ;  + 3(4+ 14- 1 + 4 -  14+ 1)-6(4+ 24- 2 + 4 -  24+ 2) + 9(L2 - 31; - 8)) 

- 6J6(4+ 24’ 1 + 4-24: 1 )  +9J6(1:4-2- l24+2) 

+ 18,/6(10 - 2)1+ 4 - + 18J6(L0 + 2)1-4+ 11 (7 )  
where L 2  = / , ( L o -  l ) + / + I -  is the Casimir of O(3). The irreducible representations of 
O(3) will be labelled by I, where 1(1+ 1) is the eigenvalue of L2. 

SU(3) possesses two hermitian O(3) scalar operators (Racah 1962) ofthird and fourth 
orders in the group generators. These will play a fundamental role in the following 
paper in giving an  orthogonal specification of degenerate 1 states, and are 

0; = J6q0(L2 - 31; - 6)+ 3 /+4-  1(210 - 3)+ 31-4, 1(210+ 3)+3(1:4-, + / 2 4 + 2 )  (8) 
and 

Although 1 appears in these expressions only implicitly via L2. so that their forms are 
independent of the I values of states upon which they act, we shall find i t  convenient to 
suffix them with 1 since their eigenvalues d o  depend on 1. Also, 0; is a particular example 
of the I shifting operators which we are about to construct, and the forms of these d o  
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depend explicitly on 1. 0: and Q: do  not commute and so cannot be simultaneously 
diagonalized except when acting on states corresponding to  nondegenerate I values. 
The apparatus for obtaining their eigenvalues consists of the I shift operators, which we 
now derive. 

As basis vectors for the representation ( p ,  q )  we employ the kets Ip. q :  I :  a , .  nz), where 
m is the eigenvalue of I ,  and U ,  is the as yet undefined parameter needed for their unique 
specification, satisfying the orthonormality condition 

( p .  q :  1, U , .  mlp. g :  If, b,,. m’) = ~ ~ , ~ * d a f , b f , d m , , , ~ .  (10) 

Since the shift operators will not change p and y, they will be suppressed in the following. 
We look for ‘pure’ I shift operators which leave m unchanged. whose action on the kets 
must therefore have the form 

OLIL a,, m> 8~ I / ’ ,  b, .I> 

[ L 2 ,  O,] = 2jL0,. 

0, must clearly commute with I ,  and have a commutator with L 2  of the form 

( 1  1) 

We shall also require 0, to contain the q p  to first order only, and therefore choose i t  of 
the form 

( 1 2 )  

which. up to an  overall multiplicative constant, is the most general such operator which 
also commutes with I , .  

Using the commutation relations (4). one obtains an  expression for [ L 2 ,  O,] in terms 
of q,, l ,q ,  and I : q T 2 ,  in which the coefficients depend on both I and nz and are ob- 
tained by replacing L2 and 1, by their eigenvalues whenever they lie to the extreme right 
of all other operators. Use of equation ( 1  1) also gives rise to an expression for [L2,  O,] in 
terms of the q ,  etc: so by equating coefficients of the five operators in the two expressions 
we obtain five linear equations to  solve for a. b. c and d .  The conditions for a solution is 
the vanishing of the determinant of coefficients of 1. U ,  b. c and d .  and this yields the 
following fifth order equation to be solved for 2 : 

(131 

0, = J6q0 + u I + ~ _  + blLq+ + cIZ,+ + d P q +  

jv(2 - I - 1)(3. + I )  (3. - 21 - 3)  (A + 21 - 1) = 0. 

Note that this is independent of m. 
The permissible values of j. are therefore k(2I + k + 1) where k = 0. k 1, k 2 ,  and for 

each of these values we may solve for a, b. c and d in terms of I and m. O n  multiplying 
the resulting 0, by a common denominator and replacing m by I ,  again. we obtain five 
operators, the first of which is just the 0: of equation (S), the other four being 

0: ’ = J61,(12 - I ;  - 3)q,  + ( I o  - I -  1 ) (2/ ,+ I -  2 ) I+q-  + ( I o  + I +  1)(2I ,  + 2 -  / ) I - C ~ +  

+ ( I ,  - I - 1)I:q- 2 + ( I ,  + I  + 1)/2q+ 2 (14) 

0;’ = J61, (12+21-1~-2)~ ,+(10+I) (210-I -3) I+~. . ,  

+ ( I ,  - I)(2I,  + I + 3) I -q+ 1 + ( I ,  + I)I?q- 2 + ( I ,  - I)I?q+ 2 

- 2(I,  + I +  1)(I, - / ) ( I , +  I +  2 ) I -q+  1 - ( I ,  - I -  l)(I,- I -  2 ) I + q _ ,  2 

(15)  

0; = J 6 ( I ,  + I +  1)(/, - I -  1)(IE - I 2  + 4)q, - 2 ( / ,  - I -  l ) ( / ,  + I ) ( / ,  - I -  2 ) I+q-  

- ( I ,  + I + 1)(I, + I +  2 ) / 2 q +  2 (16) 
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OF2 = ?/6(10 + I ) ( / ,  - I ) ( / ;  - I * -  2I+ 3)q0 - 2(10+ I -  l ) ( Io-  I -  1)(10 + I)I+q- 

- 2(I, - I + 1)(I, + I + l ) ( I o  - I)I-q + 1 - ( I ,  + I - l)(I, + /)I: 4- 2 

- ( I o  - I +  1)(1, - / ) I ? q + 2  I 

[ L 2 :  0:; = k(21+ k t  1)0:, 

(17) 

(18) 

Since 

k = 0, & 1, i 2  

one easily deduces that 

L2(0 : j / , a l . t ?~ ) )  = ( I + k ) ( l + l + k ) ( O ~ J I . ~ , , m ) )  

so that 

Of~I . a , .m)  x I I+k.b,+, .m) (19) 

thus justifying the k superscript. The I subscript is justified by the fact that. apart from 
0: (which is the only one of these operators which is hermitian). 0; depends explicitly 
on the I value of the state upon which it acts since I does not appear in its expression 
solely in the form / ( I +  1). which could be replaced by the operator L2.  

Now, in analogy with the fact that ( I ,  mll, x ( I ,  m+ 11. i t  might be tempting to  
suppose that 

( I .  b, .  ml0: cx ( I - k .  a , - k ,  ~ 7 1 ,  

in other words that. when acting to the left upon bras. 0;' and 0;'  (i = 1,2)  are. respec- 
tively. I lowering and I raising operators. This would be the case if, like I , .  0" and 0-' 
were hermitian conjugate operators : however, they are not. due to their dependence on I .  
Equation (18) holds only when acting to the right upon kets since, in replacing L2 by 
I ( [ +  1) in the calculations of the Of. it is assumed that all operators involved act to the 
right so L 2  has first to be placed to the extreme right of all other operators. If  they were 
acting to the left upon bras. L 2  would have to be placed to the extreme left of all other 
operators before such a replacement would be permissible. and this would give rise, 
through commutation. to extra terms which would alter the expressions for the 0;. It 
is in fact easily verifiable by explicit calculations (see later) that (0;)' # OILkk, and 
therefore 

(20) 

Of, as given by equations (14)-( 17). are therefore 'one-sided' I shift operators. shifting 
I by k only when acting to the right. Similarly, (0;)' may act only to the left upon bras : 

( I :  b, .  ntj0: & ( I - k .  L I - ~ .  ml. 

( I ,  a,, ml(O:)i x ( I - k .  b,-,,  Yl?', 

but 
(O:)'lI+ k .  b,,,. m )  & / I ,  a,. m) .  

Inspection of equations (14)-(17) shows that the shift operators exhibit some sym- 
metry. namely that for i = 1.2,O:'and 0; can be obtained from each other by replacing 
I by - ( I +  1). The reason for this is that the eigenvalue I ( / +  1)  is unchanged by this 
replacement : in fact the representations of O(3) can be labelled either with I = 0,1,2. .  . . . 
or  with I = - 1, -2,  - 3 , .  , , , Using the specification of representations in terms of 
positive I ,  0:' increases I by i and therefore L2 by the positive amount i(2I+i+ 1). 
Suppose, instead, we specify the representations in terms of negative I :  then 0:' still 
increases I by i. but increases the eigenvalue of L 2  by the now negative amount i(21+ i+  1). 
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Writing I = -( / '+  l), where I '  is positive, this means that OTt,,+ 1) decreases the eigen- 
value of L 2  by i(2I'- i +  1); which is precisely what the operator 0;' does in the positive 
I specification. 0:' and 0;' therefore interchange their roles on passing from a speci- 
fication of representations of O(3) in terms of positive I t o  one in terms of negative I .  
As we should expect, 0:. which leaves 1 unchanged. is invariant under 1 + - ( I +  1). 

Finally, in this section, we observe two facts. Firstly, the requirement that the shift 
operators be of first order in qp is not too  restrictive, since I shift operators of higher 
order in q,  may easily be constructed from them : for instance 0;220: is a second order 
operator in g, shifting I by + 1: whereas 0:+220:2 and 0:+130:~10: are operators of, 
respectively, second and third orders in the qp which shift I by +4. Secondly, in the 
construction of the shift operators, n o  use was made of commutators of the form [q,, (I,] : 
only the fact that the qp transform according to a n  irreducible five-dimensional tensor 
representation of O(3) was employed. This strongly suggests that similar shift operators 
may be constructed from arbitrary tensor representations, and  we hope to consider 
this problem in a later paper. 

3. Hermiticity properties of the shift operators 

Several formulae, which will prove essential in the following paper in the calculation of 
matrix elements of the shift operators. may be derived once the constants x ~ , ~ ,  i = 1 , 2  
appearing in the equation 

( I ,  a,, ml(O:i)t//+i. b,+',  m )  = xi,,(/: a,. mlO;+,ll+ i, b,+' ,  m) (23) 

are known, so we now calculate them. 
Taking the hermitian conjugate of equation (14). we obtain 

Comparison of this with equation (15) shows immediately that (0: l)t # 0;+ll. Defining 
the difference operator E by 

and taking matrix elements between ( I .  a,, mj and l I +  l 5  b, ,  1, m ) ,  we obtain 

which on substitution of the easily calculated expression for E becomes 
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The various matrix elements may be calculated in terms of reduced matrix elements 
using the formula (Edmonds 1957) 

where ( -k ik.)  is a 3-j symbol and  t ,  = + 1 for p = - 1. k2, and t ,  = - 1 for p = 0. 1. 
O n  substituting these matrix elements in equation (25) and  dividing through by the 

common reduced matrix element ( I ,  a , l~q~l l+  1. b, ,  '). one obtains an  equation for a ' , ,  
whose solution is 

In a precisely analogous manner, one obtains 

21-t 1 
21+5' R2,I  = ~ 

Now from the 0: we may construct various operators which commute with L2.  the 
ones with which we shall be concerned being of one of the types O;+!kO:k, 0,$110,$'20:2, 
O ~ ~ l O , ' ~ l O ~ ' .  and O~~20,TT110,T1. That these d o  commute with L 2  follows from the 
fact that the sums ofthe superscripts in their constituent operators all vanish ;for instance 

and so O;+',O: ' leaves 1 unchanged: there is, of course, no  reason why i t  should not 
alter the extra parameter a,. In the following section we shall see that these operators 
may all be expressed in terms of I , ,  I ,  and the O(3) scalar operators 0; and Qp ; it is for 
this reason that they are so important. Many relations connecting the matrix elements 
of these product operators follow from equations (23) : we shall calculate a typical one 
of these and be content simply to  state the rest. 

The first set of relationships connect the matrix elements of 0:' to those of O,ylO;' : 
consider (1. a,, m~O;~ ,O:  ' 1 2 .  a, ,  m )  and insert a complete set of states between 0;;' and 
0: ' excluding. however, those which give rise to  zero matrix elements. This yields 

Using equation (23) and the reality of x1,,, we obtain 
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In a similar manner we obtain seven more relations summarized by the equations 

d o  
set 

The  next set of relations, which inter-relate the matrix elements of the Q,YIOt i ,  etc. 
not depend on hermiticity properties, and are obtained by the insertion of a complete 
of states between two shift operators. They are summarized by the equations 

and 

1 ( I ,  a , ,  mI0,T~iO:k20?21~, a,, m )  = 1 ( I *  1, b, 1 ,  mIO:k,~:~O:il~Il+ 1, b, 1, m )  
01 b r i  I 

= 1 ( I*2 . c f t2 ,  m10:20,~, '10,~21/f2,c,t2.m). (31) 
1 1 1 2  

The final set of relationships give the hermiticity properties of the product operators 
and are obtained by inserting a complete set of states between shift operators and  using 
equation (23): they are 

(32) ( I ,  a , ,  mIO,$'lO?lI/, a ; ,  m> = ( / , a ; ,  mIO,ylO:'Il, a, m)* 

(1 .  a, .  m ~ o , $ 1 1 0 , ~ 2 0 ~ 2 ~ / .  a ; ,  m )  = ( I ,  a ; ,  m I 0 , ~ 2 0 : 2 1 0 ~  '11, a,, m>* 

which show that the 0,$'10:' are  all hermitian operators, 

(33) 
and 

( I ,  a, ,  m/O;.10:-210; '11, a ; ,  m )  = ( I ,  a , ,  m~o:-',0;,2,0: 'I!, a , ,  m)* .  (34) 

are hermitian conjugates, as are These show that 0,~10:~20:2 and 0,T220:k110: 
0-1 0 + 2  0-1 and O i l  0 - 2  O i l .  

I t 1  I - 1  I 1 - 1  f + 1  I 

4. Explicit forms of the product operators 

The product operators O,$'iO:l and 01yi0,$120: 2 ,  etc, introduced in the last section 
commute with L2 and 2, and must therefore be expressible in terms of I , ,  I,, 0: and Qp. 
These expressions involve the I and m values of the states upon which they act, the 
dependence on  m being due to the fact that the product operators d o  not commute with 
I , .  In order, however, to considerably simplify their calculations we restrict our  con- 
siderations to  the case when they act on states ofzero m value. This is always permissible 
since it is already well known (Elliot 1958a, b, Bargmann and  Moshinsky 1960,1961 and  
De  Baenst-van den Broucke et a1 1970) that only integral values, for which there is always 
a n  m = 0 state, occur in the decomposition of representations of SU(3) into those of its 
O(3) subgroup. Also, as will be seen in the following paper, this seemingly drastic 
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condition will not seriously detract from the generality of subsequent calculations since 
the eigenvalues of 0: and Qp are independent of m. 

The expressions for the product operators are, even with the above simplification. 
extremely tedious to calculate, so we shall merely state them. They are 

O;+’,o: 
( /+  1)2 

= -$(O:)’-f(/+ 1)(/+3)QP +24I(/+ 1)2(2/+3)12 

-2/*(1+ 1)(2/3-212+21-21) 

0;2,0:2 
( I  + 1)2(1 + 2)2 

O f 2  0 - 2  

l2(1  - 

= $0:)’ +f(21+ 3)(21+ 5)Q: + 24(/ + 1)(/  + 4)(2 /+  3)212 

- 21(1+ 1)(2/+ 3)(213 +2512 + 3 / +  3) 

= $OP)2+g2/ -  1)(2/-3)QP+241(1-3)(21- 1)212 1 - 2  1 

-2 / ( /+  1)(2I- 1)(2/3-  191’+91+27) 

= - - 3(12 + 51 + 5)QpOp + +(2/+ 3)(/  + 4)( /+  5 )  [Qp, Op] 

-432(/+ 1)(2+2)(2/+ 3)120p + 1296J61(1+ 1)*(1+4)(21+ 3)213 

- i 8 / ( / +  1)(214+ 1213+2812+54/+45)op 
9 o + l  o+l  0 - 2  

1 - 1  I - 2  1 

P(/- 1)2 

= -&0p)3-3(12-3/+ 1)QPOp-$(2/- 1)([-3)(/-4)[Qp, Op] 

+4321(1- 1)(2/- l ) 1 2 0 p +  1296J612(/+ 1)(1-3)(2/- 1)213 

- 18/(/+ l)(214-413+4/2-26/+9)0p 
1 0 + 2  0-1 

I - 1  

P ( / +  1)2 

= -30p)3 - 3(12 + 1+ 1)QpOp -a(/+ 1)(1- 4)(2/+ 3) [Qp, Op] 

+4321(/+ l)I,Op+ 1296J6/2(1+ 1)2(2/+3)(21- 1)1, 

-l81(1+1)(2l4+4l3+ 1212+ lOl+9)Op 
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90+2 0 - 1  0 - 1  
1 - 2  1 - 1  I 

P(1- 1)2 

= -$op)3-3(/2-31+ i ) ~ p o p + + i ( i +  1 ) ( 2 / - 5 ) [ ~ p ,  opi 
+432/(/- 1)(21- l)Z20p+ 12964'6/2(/+ 1)(/-3)(2/-  1)21, 

- I S / ( / +  l)(2/4-413+4/2-261+9)0p 
90-2 o+l o+l 

I f 2  1 + 1  1 

( I  + 112(/ + 212 

= - f(o33 - 3(12 + 51 + 5 ) ~ p o p  - + / ( I  + 1)(21+ 7 )  [Q;. op1 
- 432(I + 1 ) ( / +  2)(2/+ 3)Z,Op + 1296j6/( /  + 1)2(/ + 4)(21+ 3)2Z3 

(43) 

- 1841 + 1) (2/4 + 1213 + 2N2 + 541 + 45)Op. (44) 

The only nonhermitian operators appearing in these expressions are [Q-', Op] and  
@Op. so the OIyiOyi are clearly hermitian, in agreement with equation (32). The triple 
product operators are not hermitian, and  in fact equations (33) and (34) were used to 
obtain equations (42)-(44) from equations (39)-(41). Using the fact that 0 l i  and 0;' 
go over into each other on replacing / by - ( /+  l),  equations (36), (38) and (40) may 
easily be derived from, respectively, equations (35), (37) and (39). 

Finally, from equations (35)-(38) we may derive the following formulae giving 
QP, (OP)' and 0:JiO; in terms of O;JiO: : 

o,',O:' o -20+2  
( I +  1)2 + ( I +  1)2(/+2)2 )-6(/+1){12(2/+3)Z2-/(212+141+3)} (45) 

- 24(I + 1)*(2/ + 1) { 91, - / ( I  + 3)) (47) 
0 ' 2  0 - 2  

12(1- 1)2 ( I +  1)2(r+2)2 I f l  I ( I+ 1 ) 2 ( ~ + 2 ) 4  I 

1 - 2  I - 4(2/+ 1 )  o- 1 o+  1 + 4 - 4 1  0 - 2  0 + 2  _ -  

+48/(2I+ l){18Z2+/(/ t l)(/-5)).  (48) 

These formulae will prove to  be extremely useful in the following paper in obtaining 
the eigenvalues of 0: and Qp. 
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